Electron Tweezers

A recent paper by researchers from the National Institute of Standards and Technology (NIST) and the University of Virginia (UVA) demonstrates that the beams produced by modern electron microscopes can be used to manipulate nanoscale objects.

The tool is an electron version of the laser "optical tweezers" that have become a standard tool in biology, physics and chemistry for manipulating tiny particles. Except that electron beams could offer a thousand-fold improvement in sensitivity and resolution.

If you just consider the physics, you might expect that a beam of focused electrons -- such as that created by a transmission electron microscope (TEM) -- could do the same thing. However that's never been seen, in part because electrons are much fussier to work with. They can't penetrate far through air, for example, so electron microscopes use vacuum chambers to hold specimens.

So Vladimir Oleshko and his colleague James Howe, were surprised when, in the course of another experiment, they found themselves watching an electron tweezer at work. They were using an electron microscope to study, in detail, what happens when a metal alloy melts or freezes. They were observing a small particle -- a few hundred microns wide -- of an aluminum-silicon alloy held just at a transition point where it was partially molten, a liquid shell surrounding a core of still solid metal.

"This effect of electron tweezers was unexpected because the general purpose of this experiment was to study melting and crystallization," Oleshko explains. "We can generate this sphere inside the liquid shell easily; you can tell from the image that it's still crystalline. But we saw that when we move or tilt the beam -- or move the microscope stage under the beam -- the solid particle follows it, like it was glued to the beam."

Potentially, electron tweezers could be a versatile and valuable tool, adding very fine manipulation to wide and growing lists of uses for electron microscopy in materials science. "Of course, this is challenging because it requires a vacuum," he says, "but electron probes can be very fine, three orders of magnitude smaller than photon beams -- close to the size of single atoms. We could manipulate very small quantities, even single atoms, in a very precise way."

(Adapted from ScienceDaily)

No comments: